Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

+(x, +(y, z)) → +(+(x, y), z)
+(*(x, y), +(x, z)) → *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)
Used ordering:
Polynomial interpretation [25]:

POL(*(x1, x2)) = 2 + 2·x1 + x2   
POL(+(x1, x2)) = 1 + x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.